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Abstract

We assess the suitability of word embeddings for practical information
retrieval. While limiting ourselves to unsupervised models, we compare
the performance of several techniques that leverage word embeddings to
retrieval models (i. e., provide a query-document similarity): the intuitive
word centroid similarity, dedicated paragraph vectors, the physically in-
spired Word Mover’s distance, as well as a novel IDF re-weighted word
centroid similarity.

In our comparison, we thrive to simulate a strictly practical setting: short
queries, a boolean matching operation, only the first twenty retrieved
documents are considered. We evaluate the performance using the ranking
metrics mean average precision, mean reciprocal rank and normalised
discounted cumulative gain. Additionally, we inspect the retrieval models’
sensitivity to document length by using either only the title or the full-text
as documents.

We conclude that word centroid similarity is the best competitor to state-
of-the-art retrieval models and can be further improved by re-weighting
the word frequencies according to inverse document frequency before
aggregating the respective word vectors of the embedding. The proposed
cosine similarity of IDF re-weighted word vectors is competitive to the
TF-IDF baseline and even outperforms it in case of the news domain with
a relative percentage of 15%.

In the context of this research contribution, a dedicated information re-
trieval framework has been developed. The key features include the in-
corporation of embedding-based retrieval models, the simulation of a
practical setting, automatic evaluation as well as convenient extendability
by new retrieval models. The corresponding user’s guide and developer’s
guide are part of this work.
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Preface

This thesis is divided into two components. A research contribution of
8 pages ACM double-column style (sigconf of acmart 1) and a technical
report describing the developed information retrieval framework. The
technical report is in turn divided into a user’s guide and a developer’s
guide. For reasons of style consistency, the research contribution is adapted
to the Kiel Computer Science Series style (ifiseries of KCCS 2) in the
present thesis. The developed information retrieval framework is available
on GitHub 3.

1https://www.acm.org/publications/proceedings-template
2https://www.informatik.uni-kiel.de/~discopt/kcss/index.html
3https://github.com/lgalke/vec4ir
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Chapter 1

Embedded retrieval

1.1 Introduction

Word embeddings have become the default representation for text in
many neural network architectures and text processing pipelines [BDV+03;
BCV13; Got16]. In contrast to the typical bag-of-words representations,
word embeddings are capable of capturing semantic and syntactic relations
between the words [MSC+13; PSM14]. So far, they have been successfully
employed in various natural language processing tasks such as word
analogies, clustering, and classification [MSC+13; PSM14; KSK+15; BA16].
Word embeddings are recognised as the main reason for natural language
processing (NLP) breakout in the last few years [Got16].

A word embedding is a distributed vector representation for
words [MSC+13]. Each word is represented by a low-dimensional
(compared to the vocabulary size) dense vector, which is learned from
raw text data. In several natural language processing architectures such
as neural networks these representations serve as first layer for the
conversion from raw tokens (words) to a more useful representation.
The property that semantically related terms are clustered close to each
other in the representation space proves the usefulness of this approach
for classification and other NLP tasks. However, transferring the success
of word embeddings to the ad-hoc Information Retrieval (IR) task is
currently an active research topic. While embedding-based retrieval
models could tackle the vocabulary mismatch problem by making use
of the embedding’s inherent similarity between distinct words, most of
them struggle to compete with the prevalent strong baselines, namely
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1. Embedded retrieval

TF-IDF [SB88], Okapi BM25 [RWH+95] and their relatives.

The majority of practical information retrieval systems rely on an extended
boolean model [SFW83; MRS08]. Extended boolean models generalise
both standard boolean models and vector space models. These extended
boolean models are highly efficient, since the documents can be stored
in an inverted index [MRS08]. Thus, the IR system stays responsive even
if a huge amount of documents is indexed. Those practical IR systems
employ a binary matching operation on the inverted index to reduce the
set of documents, to which the similarity of the query is computed (see
Figure 1.1). However, some advanced techniques based on query expansion
and relevance feedback can be safely incorporated in an extended boolean
model.

Figure 1.1. A simplified information retrieval system.

We consider a practical ad-hoc IR task which is composed of two core

6



1.1. Introduction

steps: matching and scoring [MRS08]. In the matching step, documents
of the corpus are matched against a query, typically by (binary) term
co-occurrence: either the documents contain at least one term of the query
or not (boolean OR query). In the scoring step, these matched documents
are ranked according to their relevance to the query. As these core IR tasks
are different from other NLP tasks, the incorporation of word embeddings
is challenging. Since we evaluate the suitability of embedding-based re-
trieval models in a practical context, we fix the matching operation and
concentrate on the similarity scoring operation. Additionally, we restrict
ourselves to purely unsupervised models. Please note that every retrieval
model could be potentially improved by query-relevance information. We
also exclude pseudo-relevance feedback, since it is typically not applied in
a practical IR setting 1.

In this paper, we compare and evaluate several similarity metrics for query-
document pairs using word embeddings and assess their suitability in a
practical IR setting. The considered approaches are word centroid similar-
ity and a novel IDF re-weighted variant, Word Mover’s distance [KSK+15]
and paragraph vectors [LM14]. Practical IR systems allow treating the
fields (title, full-text, date, . . .) of a document differently. Thus, we anal-
yse whether the performance of the embedding-based techniques depends
on document length. In summary, we will answer the following research
questions:

1. Which embedding-based techniques are suitable for practical informa-
tion retrieval?

2. How does their performance depend on document length?

The remainder of this chapter is structured as follows: after providing some
related work in Section 1.2, we describe the embedding algorithms and
retrieval models in Section 1.3. In Section 1.4, we describe the conducted
experiments in detail. The results and their discussion are provided in
Section 1.5 and Section 1.6, respectively. Finally, we draw a conclusion in
Section 1.7.

1Pseudo-relevance feedback is not natively included in Apache Lucene, thus SOLR and
Elasticsearch
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1. Embedded retrieval

1.2 Related work

In this section, we give brief overview on related work from the information
retrieval and word embedding fields.

Information Retrieval Extended boolean models such as TF-IDF [SB88]
and Okapi BM25 [RWH+95] rely on bag-of-words representations, re-
weighted by inverse document frequency. While still considered a strong
baseline, these models (along with others) struggle to deal with two typ-
ical difficulties of the IR task: term dependencies and vocabulary mismatch
[MRS08]. The former means the independence assumption of terms does
not hold in natural language, the latter describes the problem of dis-
regarding semantically related terms, when exact matching fails. Early
approaches to tackle the term dependency problem involved word n-
gram models. However, Fagan [Fag87] showed that these approaches are
not so successful, most probably caused by higher sparsity of the more
complex n-grams. [Zha08]. There are several probabilistic models that
rely on language modelling. The documents are ranked either by each
document language model’s probability of generating the query or by
the probability of generating the document, given the query language
model [BBL99; PC98; MLS99; Hie98]. The divergence from randomness
retrieval model was shown to outperform BM25 consistently on several
TREC collections [AR02].

Topic Models The idea of distributed representations for documents
goes back to latent semantic indexing by Furnas et al. [FDD+88]. It relies
on a singular value decomposition of the term-document matrix. It was
extended with a probabilistic variant by Hofmann [Hof99]. Finally, Blei,
Ng, and Jordan [BNJ03] proposed the probabilistic topic model Latent
Dirichlet Allocation (LDA) in 2003.

Word Embeddings Bengio, Ducharme, Vincent, and Janvin [BDV+03]
first introduced a statistical language model based on neural networks,
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1.2. Related work

so-called neural net language models. These language models form the
basis for word embeddings learned by a neural network. Mikolov et al.
[MSC+13] proposed a neural network based word embedding (Word2Vec),
in which the representations are learned by training to reconstruct each
word’s context (skip-gram model). The success of the Word2Vec model
relies on skip-gram training with negative sampling, an efficient training
algorithm (not involving dense matrix multiplication). Beside other word
embeddings [CW08; MYH09; TRB10], it is notable that a word embedding
can also be computed by directly factorising the global co-occurrence
matrix as done with GloVe [PSM14]. Le and Mikolov [LM14] further ex-
tend the Word2Vec approach by additionally modelling representations
of whole documents by paragraph vectors (Doc2Vec). Their experiments
indicate that these distributed representations are useful for information
retrieval tasks. However, the evaluation task is to find one relevant docu-
ment out of three (given 80% training data), which is not a classical ad-hoc
query task.

Word Embeddings for IR Clinchant and Perronnin [CP13] proposed a
method for aggregating word vectors with the Fisher kernel to a document
level. The authors applied their approach in ad-hoc retrieval outperforming
Latent Semantic Indexing, but not TF-IDF or divergence from randomness.
Zheng and Callan [ZC15] learn to re-weight word embeddings using BM25
in a supervised context. Kusner, Sun, Kolkin, and Weinberger [KSK+15]
proposed the Word Mover’s distance, a similarity metric between docu-
ments based on word embeddings. Inspired by the Earth Mover’s distance,
the Word Mover’s distances solves an optimisation problem for the min-
imum cost of transportation between the words of two documents. The
cost of moving from a single word to another is the cosine distance of
their respective word vectors. Recently, Zamani and Croft [ZC16] proposed
embedding based query language models, a dedicated retrieval technique
based on word embeddings which thrives to tackle the vocabulary mis-
match problem by incorporating word embeddings into query language
models. They propose two methods for embedding-based query expansion
as well as a method for embedding-based pseudo-relevance feedback.

9



1. Embedded retrieval

1.3 Embedding-based retrieval

In the following, we will sketch the two major algorithms for learning a
word embedding: Word2Vec (Section 1.3.1) and GloVe (Section 1.3.2). Then,
we will depict the application of embedding-based techniques for comput-
ing a query-document similarity by word centroid similarity (Section 1.3.4),
IDF re-weighted word centroid similarity (Section 1.3.5), Word Mover’s
distance (Section 1.3.6) and paragraph vectors (Section 1.3.3). A graphical
overview of the interaction of the techniques is given in Figure 1.2.

Figure 1.2. Overview of techniques for embedding-based retrieval

Notation We will use the following notation throughout the section:

Ai Row i of matrix A as a column vector (i. e. transposed row vector)

X P Rnˆm nBOW (L2-normalised bag of words) representation of n docu-
ments with m vocabulary words

q P Rm nBOW representation of the query

W P Rmˆh Word embedding consisting of m word vectors with h dimen-
sions

k P N number of documents to retrieve

10



1.3. Embedding-based retrieval

1.3.1 Skip-gram negative sampling (Word2Vec)

Word2Vec [MSC+13] is an unsupervised algorithm learning a dense vector
representation for each word from a corpus. One distinguishes between
continuous bag of word (CBOW) and the skip-gram model. While the
former aims to predict the centre word from its context, the latter aims to
predict the context from the centre word. More formally, given a sequence
of w1, . . . , wT words and a context window size, the training objective is to
maximise:

1
T

T

∑
t=1

∑
´cďjďc,j‰0

log p(W t+j | W t)

The conditional probability p(Wt+j|Wt) is typically given by the (hierarchi-
cal) softmax distribution. Training with negative sampling is an approxi-
mation for the full softmax. During training, negative samples are drawn
from the vocabulary but do not appear in the actual context. A simplified
algorithmic structure for skip-gram negative sampling algorithm can be
defined as follows: Given a vocabulary V Ă N and a stream of T words
w with @t ă T : wt P V,

Algorithm 1: Skip-gram negative sampling algorithm
Data: Stream of words w
Result: Word embedding W

1 while t ă T do
2 Let wt be target word with context

C = {wt´c, . . . , wt´1, wt+1, . . . , wt+c};
3 Look up word vector h := WwT for target word wT ;
4 Predict with context words C (positive examples) along with

negative examples sampled from VzC via logistic regression
from word vector h;

5 Update word vector h by back-propagation;
6 T Ð T + 1;

11



1. Embedded retrieval

In the remainder of this work, we consider the skip-gram variant trained
with negative sampling for Word2Vec.

1.3.2 Global word sectors (GloVe)

Global word vectors [PSM14] or GloVe is an algorithm to learn a word
embedding by directly factorising the term co-occurrence matrix. More
specific, the training objective (See Equation 1.3.1) is to learn word vectors
W whose dot product equals the joint probability given by co-occurrence
matrix C.

W T
i W̄ k + bi + b̄k

!
= log (1 + Cik) (1.3.1)

The obtained word vectors can be used as basis for the document-level
similarities: word centroid similarity and Word Mover’s distance. When
the global co-occurrence matrix is discarded (typically after initial learning
of the word vectors), up-training of an existing model with GloVe is not
possible.

1.3.3 Paragraph vectors (Doc2Vec)

The paragraph vector model (or Doc2Vec) [LM14] extends the Word2Vec
model by a paragraph id as an additional input. A dense paragraph vec-
tor is learned for each paragraph (or document) in addition to the word
vectors. We consider the distributed memory approach which models a
paragraph identifier as if it was an artificial word token from the con-
text. Given the query, A paragraph vector model is capable of inferring a
paragraph vector for a new model by training for a few epochs without
updating the weights. We employ the paragraph vector model to infer
document vectors for each document. At query time we infer the docu-
ment vector for the query. Finally, the matched documents are ranked by
descending cosine similarity. For the inference step, we chose to train over
five epochs with a learning rate decaying from 0.1 to 0.0001.

12



1.3. Embedding-based retrieval

1.3.4 Word centroid similarity (WCS)

Given the term occurrence matrix X, where Xij is the number of occur-
rences of word j in document i, we compute the centroid of the document
as follows. First, we normalise each row X i to unit L2-norm (nBOW rep-
resentation). The word j corresponds to the respective word vector in the
embedding Wj. Second, we obtain the word centroid representation of
documents by matrix multiplication C = X ¨W , C P Rnˆh. Now, the cosine
similarity of the query to the centroids provides a notion of similarity:

WCS(q, i) =
(
qT ¨W

)
¨Ci

||qT ¨W || ¨ ||Ci||
The employed norm ||¨|| is the L2-norm. Given a query, the documents
are ranked by descending cosine similarity to the query. In case of length-
normalised word frequency vectors, the resulting ranking of word centroid
similarity is equivalent to the one of word centroid distance mentioned by
Kusner, Sun, Kolkin, and Weinberger [KSK+15].

1.3.5 IDF re-weighted word centroid similarity (IWCS)

In addition, we propose a variant of the WCS, where the documents’ bags
of words are re-weighted by inverse document frequency as in TF-IDF,
before the centroids are computed. Consider a bag-of-words representation
X of the documents, where Xij corresponds to the number of occurrences
of word i in document j. We first re-weight X with respect to inverse
document frequency:

X1ij = Xij ¨ idf(j)

idf(j) = log
1 + n

1 + df(D, j)

The document frequency df(D, j) is the number of documents that contain
word j. Then, we again normalise the rows of X to unit L2-norm and
compute the centroids: C = X 1 ¨W , C P Rnˆh. Finally, we compute the
cosine similarity to the query and rank the results in descending order (as

13



1. Embedded retrieval

in the WCS case).

1.3.6 Word Mover’s distance (WMD)

The Word Mover’s distance is a distance metric between two documents.
The cumulative cost of moving the words of one document to another
document is minimised. The cost function for moving from one word to
another is defined as the euclidean distance between the word vectors
c(i, j) =

∣∣∣∣Wi ´Wj
∣∣∣∣

L2. The minimisation problem is constrained, such
that all words of the source document and the destination document
must be taken into account. The resulting transportation problem can be
formalised as the following linear program, where Tij denotes how much
of the word i in the source document is moved to word j of the destination
document [KSK+15]:

min
Tě0

m

∑
i,j=1

Tij ¨ c(i, j)

n

∑
j=1

Tij = di@i P {1, . . . , m}

n

∑
i=1

Tij = dj@j P {1, . . . , m}

It can be shown that word centroid distance as well as the relaxed Word
Mover’s distance (a variant of WMD that leaves out one of the constraints)
is a lower bound for the Word Mover’s distance. These lower bounds can
be used to reduce the computational cost [KSK+15]. In addition to the full
Word Mover’s distance (WMD), we also evaluate a variant which takes the
top k documents returned by IWCS and re-ranks them according to Word
Mover’s distance (IWCS-WMD).
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1.4 Experimental setup

1.4.1 Task

Given a collection of documents D, a set of queries Q and relevance scores
for each query-document pair R : Qˆ D Ñ N (the gold standard), the
task is to return a ranked list of k (preferably) relevant documents. We
evaluate these results according to R. The values of R are restricted to
binary {0, 1} Ă N. Since we are interested in the performance of the
retrieval models in a practical setting, we put the following constraints on
the retrieval models:

Ź We perform a (disjunctive) boolean matching operation.

Ź We make no assumptions about the queries when indexing documents.

In this setting, we compare the performance of the embedding-based
retrieval models with respect to the document’s field title, abstract,
full-text using either short or long queries. We evaluate the embedding-
based retrieval models WCS, IWCS, WMD, IWCS-WMD and Doc2Vec
inference for the embedding algorithms Word2Vec, GloVe and Doc2Vec.

1.4.2 Datasets

NTCIR2 The NTCIR2 dataset consists of 134, 978 documents and 49
topics. The documents are composed of a title and an abstract field.
The topics consist of the fields title, description and narrative. From
these we use the title as short query and the description as long query.
Additionally, two sets of relevance scores are provided that associate topics
and documents (boolean). From these we chose the second set of relevance
scores rel2 with on average 43.6 (SD: 48.8) relevant documents per query.
The relevance scores of the first set are always included in the second
set. This results in a higher diversity for the ranking task. The relevancy
judgements are not complete, i. e. there are query-document pairs for
which no judgement is given. We assign these documents a relevancy of
zero, when evaluating the models.
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Economics The Economics dataset consists of 61, 792 documents and
4, 518 topics with an average of 72.98 (SD: 329) relevant documents per
query. The documents are scientific publications from the economics do-
main. As topics, we use the concepts of a domain-specific thesaurus. A
concept in the thesaurus consists of one preferred label and several alterna-
tive label. We employ the preferred labels of the concepts as queries. Each
document of the collection is manually annotated (by domain experts)
with a set of concepts. Hence, we consider a document being relevant to
a topic, if and only if the document is annotated with the corresponding
concept.

Reuters The Reuters dataset consists of 100, 000 documents (random
sample from Reuters RCV-1 [LYR+04]) and 102 topics from the news
domain. The documents were manually annotated with one or more of
the topics. On average, there are 3, 143 (SD: 6, 316) relevant documents
per topic. Each document consists of a title and a full-text field. The
descriptor label of a topic consist of two to three words. We employ these
descriptor labels as query. The assignment of the label to the document
resembles relevancy.

1.4.3 Embedding Models

Following the results of Mikolov et al. [MSC+13] and Kusner, Sun, Kolkin,
and Weinberger [KSK+15], employing a well-trained general purpose
embedding model is preferable over a corpus-specific model (caused by
the surplus in diversity of contexts for each word during training). For
this reason, and for the sake of a consistent comparison over the datasets,
we employ pre-trained general-purpose word embeddings. Thus, the
evaluation is not sensitive to the dataset and its specific training procedure
(hyper-parameters are often sensitive to the training corpus). Although
the absolute performance of the embedding-based techniques may be
further increased by training a corpus-specific model, we assume that the
relative performance of the different similarities would not differ as long
as the model itself is trained properly. As representative for Word2Vec,
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we employ the popular GoogleNews model. For GloVe we employ a similar
model (vocabulary size of 2.2 billion, vectors of 300 dimensions, cased
analysis), which is trained on the Common Crawl 2. As treatment for out-
of-vocabulary words, we found that ignoring them results in better over-all
performance than initialising them with random vectors or up-training
the missing words (See Appendix A.3).

Table 1.1. Abbreviation, corpus, word count, vocabulary size, dimensionality,
analysis, training algorithm of the pre-trained models

Model Corpus Tokens Vocab Dim Analysis Training

W2V GoogleNews 100 ¨ 109 3 ¨ 106 300 cased Word2Vec
GLV CommonCrawl 840 ¨ 109 2.2 ¨ 106 300 cased GloVe
D2V Wikipedia 224 ¨ 109 3 ¨ 106 1000 uncased PV-DM

1.4.4 Preprocessing

Considering the analysis procedure of documents and queries, we use
the same preprocessing steps for all retrieval models: First, we transform
the raw string into lower case. Second, we tokenise the string by splitting
it into words of at least two word-characters length, while treating any
non-word character as delimiter. Finally, we remove common English stop
words. To keep complexity under control, we do not apply stemming
and only consider uni-gram models. Furthermore, we do not remove
queries that contain out-of-vocabulary words. For a detailed overview
on the resulting out-of-vocabulary statistics with respect to the consulted
embedding model, we refer to Appendix A.2.

1.4.5 Evaluation

We consider three evaluation metrics: mean average precision (MAP),
mean reciprocal rank (MRR) and normalised discounted cumulative gain

2A dataset of crawled web data from https://commoncrawl.org/
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(NDCG). For all metrics, we limit the considered documents to the top
k = 20 retrieved documents. This reflects the typical user behaviour in a
practical web search task.

Let D be the set of documents, Q the set of queries, and R : QˆD Ñ N
the relevance score of a document for a query. Then a retrieval model can
be described as M : Q Ñ Dk, q ÞÑ y with y P Dk being the top-k retrieved
documents in rank order. Thus the multi-set of results for queries Q and a
retrieval model M can be written as:

RM,Q =
{
(R(q, d))dPM(q) | q P Q

}
For a proper definition of the metrics, we operate on these sets RM,Q.

Mean average precision (MAP) Precision is defined as the fraction of
retrieved documents that are relevant and number of retrieved documents.
The average precision (AP) is computed over the precision values, limited
to the top i = 1, . . . , k retrieved documents. The mean of these average
precision values is aggregated over the query set Q:

Precision(r, k) =
| {ri P r | ri ą 0} |

|k|

AP(r, k) =
1
|r|

k

∑
i=1

Precision((r1, . . . , ri), i)

MAP(RM,Q, k) =
1
|Q| ∑

rPRM,Q

AP(r, k)

Mean reciprocal rank (MRR) The reciprocal rank of a query’s result is
the fraction of the index of the first relevant document.

MRR(RM,Q, k) =
1
|Q| ∑

rPRM,Q

1
min{i | ri ą 0}

In case none of the retrieved documents is relevant, the reciprocal rank is
set to zero.
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Normalised discounted cumulative gain (NDCG) We compute the
NDCG for a single result list as follows:

DCG(r, k) = r1 +
k

∑
i=2

ri
log2 i

NDCGq(r, k) =
DCG(r, k)
IDCGq,R,k

where IDCGq,R,k is the best possible (ideal) DCG value for the specific
query q with respect to the gold standard R. In case there are more relevant
documents than k, the IDCG is also computed on the truncated optimal
results. Once again, we average NDCG over the queries, providing mean
and standard deviation.

1.5 Results

NTCIR2 Considering the results for the NTCIR2 dataset, we inspect four
configurations of either the title or the abstract field and either short
(See Table 1.2) or long (See Table 1.3) queries. We observe that using the
title field leads to better results in all metrics and for all techniques. The
TF-IDF baseline yields better results in terms of MAP on the title field
than on the abstract field (compare .35 to .46 MAP with short queries, and
.35 to .40 MAP with long queries). In case of short queries, both variants
of the Word Mover’s distance (WMD, IWCS-WMD) perform consistently
worse than IWCS as a query-document similarity. In case of long queries
and the title field, the IWCS-WMD with the GloVe model attained the
highest MAP value, .02 higher than the one of the baseline and 0.01 higher
than the MAP of IWCS with the Word2Vec model. Still, in case of the
full-text field, the MAP value of IWCS with the Word2Vec model (.36) is
higher than the WMD re-ranked variants (.30 and .35 respectively). The
TF-IDF baseline is outperformed by IWCS in terms of MAP in 3 out of
4 configurations. Still, the margin is rather small (ranging from .01 to
.02). In terms of MRR, the baseline could only be outperformed in one
configuration by IWCS with a difference of .01. The NDCG values of the
baseline are not reached by any embedding-based retrieval model.
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Table 1.2. Results for the NTCIR2 dataset using short queries and either the title
or the full-text field with respect to the evaluation metrics mean average precision
(MAP), mean reciprocal rank (MRR) and normalised discounted cumulative gain
(NDCG), limited to k=20 retrieved documents

Field title full-text

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .46 (.38) .55 (.45) .19 (.18) .35 (.37) .41 (.43) .18 (.20)
WCSGLV .37 (.36) .42 (.42) .16 (.18) .29 (.31) .40 (.43) .15 (.17)
WCSW2V .33 (.34) .35 (.38) .14 (.16) .33 (.35) .39 (.43) .13 (.15)
IWCSGLV .41 (.36) .49 (.44) .18 (.18) .32 (.32) .39 (.41) .17 (.18)
IWCSW2V .38 (.35) .45 (.43) .17 (.18) .36 (.34) .42 (.41) .17 (.18)
IWCS-WMDGLV .35 (.32) .40 (.38) .17 (.17) .35 (.36) .41 (.42) .17 (.18)
IWCS-WMDW2V .30 (.31) .34 (.37) .15 (.17) .29 (.32) .33 (.39) .15 (.17)
WMDGLV .25 (.33) .27 (.37) .11 (.17) .18 (.27) .21 (.33) .08 (.14)
WMDW2V .27 (.35) .29 (.40) .11 (.16) .22 (.29) .24 (.34) .10 (.14)
D2V .27 (.32) .33 (.39) .13 (.16) .29 (.34) .35 (.42) .13 (.16)

Table 1.3. Results for the NTCIR2 dataset using long queries and either the title or
the full-text field with respect to the evaluation metrics mean average Precision
(MAP), mean reciprocal rank (MRR) and normalised discounted cumulative Gain
(NDCG), limited to k=20 retrieved documents

Field title abstract

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .40 (.29) .51(.39) .20 (.15) .35 (.32) .47 (.43) .20 (.21)
WCSGLV .29 (.29) .38 (.41) .15 (.16) .27 (.26) .35 (.37) .14 (.14)
WCSW2V .30 (.26) .38 (.38) .15 (.15) .30 (.32) .37 (.41) .13 (.14)
IWCSGLV .37 (.34) .45 (.43) .17 (.16) .33 (.30) .44 (.41) .16 (.16)
IWCSW2V .41 (.35) .50 (.41) .19 (.15) .36 (.33) .47 (.43) .17 (.16)
IWCS-WMDGLV .42 (.36) .50 (.44) .17 (.14) .30 (.30) .37 (.38) .17 (.18)
IWCS-WMDW2V .40 (.31) .51 (.41) .18 (.14) .35 (.34) .40 (.41) .16 (.16)
WMDGLV .10 (.22) .12 (.26) .04 (.08) .12 (.21) .14 (.25) .06 (.10)
WMDW2V .22 (.33) .25 (.39) .08 (.11) .30 (.32) .37 (.41) .13 (.14)
D2V .24 (.31) .27 (.37) .11 (.16) .16 (.25) .19 (.31) .08 (.11)

Economics For the Economics dataset (see Table 1.4), we observe that
once again the retrieval over titles yields consistently higher metric values
in terms of MAP, MRR and NDCG. Considering the title field, the IWCS
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is similar to the baseline in terms of MAP (.37). The MRR and NDCG
values attained by IWCS are slightly higher than the ones of WCS (.01). In
case of full-text, no embedding-based technique could outperform the
baseline. Doc2Vec inference is the closest competitor with .28 compared to
.34 MAP of the baseline.

Table 1.4. Results for the Economics dataset using either the title or the full-text
field with respect to the evaluation metrics mean average Precision (MAP), mean
reciprocal rank (MRR) and normalised discounted cumulative Gain (NDCG),
limited to k=20 retrieved documents

Field title full-text

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .37 (.38) .42 (.44) .26 (.30) .34 (.35) .40 (.43) .26 (.30)
WCSGLV .36 (.37) .42 (.44) .25 (.29) .21 (.29) .25 (.36) .13 (.19)
WCSW2V .36 (.37) .41 (.43) .25 (.29) .26 (.31) .32 (.40) .19 (.24)
IWCSGLV .37 (.37) .43 (.43) .26 (.29) .23 (.30) .28 (.37) .16 (.22)
IWCSW2V .37 (.37) .43 (.43) .27 (.30) .26 (.31) .32 (.40) .19 (.24)
IWCS-WMDGLV .33 (.35) .38 (.41) .25 (.28) did not finish
IWCS-WMDW2V .32 (.34) .36 (.41) .25 (.28) did not finish
WMDGLV .28 (.34) .32 (.41) .19 (.27) did not finish
WMDW2V .27 (.34) .31 (.41) .19 (.27) did not finish
D2V .30 (.36) .35 (.42) .21 (.28) .28 (.31) .33 (.39) .22 (.26)

Reuters Considering the results for the Reuters dataset (see Table 1.5),
we observe that IWCS outperforms the baseline in case of the title as well
as the full-text field. The IWCS attains a MAP of .60 compared to .52 of
TF-IDF (« 15% relative improvement). The results for the two embeddings
Word2Vec and GloVe are more or less tied in all cases. In case of full-text
with the Word2Vec model, re-weighting the top k documents with WMD
could slightly improve the MAP (.56 compared to .55), while the NDCG
is equal to one of IWCS and the MRR is slightly lower (.58 of TF-IDF
compared to .60).
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Table 1.5. Results for the Reuters dataset using either the title or the full-text
field with respect to the evaluation metrics mean average Precision (MAP), mean
reciprocal rank (MRR) and normalised discounted cumulative Gain (NDCG),
limited to k=20 retrieved documents

Field title full-text

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .52 (.35) .61 (.43) .41 (.32) .51 (.37) .58 (.43) .44 (.36)
WCSGLV .55 (.31) .63 (.40) .42 (.29) .51 (.33) .60 (.41) .44 (.33)
WCSW2V .54 (.33) .63 (.41) .43 (.31) .52 (.35) .57 (.41) .46 (.35)
IWCSGLV .58 (.31) .69 (.39) .45 (.29) .54 (.34) .63 (.41) .47 (.33)
IWCSW2V .60 (.33) .69 (.40) .47 (.32) .55 (.35) .60 (.41) .49 (.36)
IWCS-WMDGLV .54 (.30) .62 (.39) .43 (.49) .55 (.34) .61 (.41) .46 (.33)
IWCS-WMDW2V .54 (.33) .58 (.40) .44 (.32) .56 (.37) .58 (.42) .49 (.37)
WMDGLV .49 (.32) .54 (.39) .38 (.29) .43 (.32) .50 (.41) .37 (.31)
WMDW2V .48 (.34) .53 (.41) .39 (.31) .41 (.34) .45 (.41) .33 (.32)
D2V .48 (.32) .55 (.41) .36 (.30) .43 (.33) .52 (.43) .36 (.32)

1.6 Discussion

Comparing the full-text to the title field, we notice that the ranking
quality (in terms of MAP, MRR and NDCG) is higher for the title field,
consistently over all datasets and over all metrics (the only exception being
the NDCG on the Reuters dataset). We can only infer that the surplus of
information from the full-text does not help the scoring algorithms to pro-
duce a better ranking, but rather clutters the relevancy to the information
need of the query.

Considering long and short queries, the results for the NTCIR2 dataset
indicate that longer queries lead to higher metric values for all embedding-
based retrieval models. We assume, that this is caused by the surplus of
words carrying semantic information. In contrast, the MAP values of the
baseline drop from .46 when using long queries to .40 when using short
queries. Thus, we can exclude that the rise in performance is caused by
the higher amount of matched documents.

For the embedding-based retrieval models, we observe that the newly
proposed IWCS outperforms all other techniques. The only exception are
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the title field of the Reuters dataset and the title field of the NTCIR2
dataset when using long queries. In those cases, the additional re-ranking
of IWCS-WMD slightly improves the attained MAP by .01 in two cases and
.05 in one case. Comparing WCS to IWCS, we observe that the aggregation
of IDF re-weighted term-document vectors lead to better performance in
all metrics over all datasets. This implies that it is valuable to reduce the
impact of common words in the corpus, also in case of word embeddings.
Comparing IWCS to the TF-IDF baseline, we observe that the two tech-
niques yield similar performances in all metrics. The two techniques have
in common that both re-weight the terms by inverse document frequency.

We furthermore investigate in which cases the IWCS has an advantage over
TF-IDF. Consider a document containing a high amount of occurrences of
the word automobile and query consisting of the term car. The document
would be scored by TF-IDF relatively low since the term car does not
occur frequently in the document. IWCS would score the document higher
because the vector representations for car and automobile are close to each
other in the embedding space (cosine similarity of .58 in the considered
Word2Vec model). Especially on the Reuters dataset from the news domain,
the IWCS outperforms the baseline with a relative percentage of 15%
(MAP .60 compared to .52). We assume, that on the one hand the scientific
datasets contain more domain-specific words that are not included in the
embedding models. On the other hand, most of the words of the Reuters
dataset from the news domain are contained in the word embedding
model, since they are also trained on news data.

The embedding algorithms Word2Vec and GloVe produce similar results.
One theoretical advantage of Word2Vec is that it can be up-trained. How-
ever, up-training did not increase the performance in our setting (See
Appendix A.3). Still, up-training might be valuable in an incrementally
growing corpus of documents as in a typical practical IR setting. Without
up-training, new and possibly domain specific words that carry valuable
semantic information, could never contribute to a document’s representa-
tion. Please note that in contrast to GloVe, Word2Vec is capable of learning
a word embedding iteratively (also from a base-model that is learned by
GloVe). During the experiments, we gained the following valuable insights:
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Ź Ignoring out-of-vocabulary words results in a higher performance than
initialising them by random vectors. (See Appendix A.3).

Ź Up-training of missing word vectors with (frozen) original vectors does
not improve retrieval performance of embedding-based techniques (up
to 100 epochs with skip-gram negative sampling) (See Appendix A.3).

Ź All-But-The-Top embedding post-processing [MBV17] does not im-
prove the performance of embedding-based retrieval models (See Ap-
pendix A.4).

Considering the WMD, we inspect the relative performance of IWCS and
IWCS-WMD in detail, in order to gain insight on their relation. Please
recall, that IWCS-WMD takes the top k documents returned by IWCS and
re-ranks them with respect to Word Mover’s distance. While IWCS-WMD
is able to improve the result of IWCS in three (out of 16) cases, the perfor-
mance of IWCS-WMD is in general lower than the one of IWCS. Therefore,
we conclude that the WMD is not worth the additional computational ef-
fort in a time-sensitive practical IR setting. When comparing IWCD-WMD
to the full Word Mover’s distance (WMD), we notice a considerable drop
in performance. The additional documents that are taken into account by
the full WMD are not helpful for the ranking quality of the results. As the
computational effort is even higher in this case, we cannot recommend the
usage of unmodified WMD for practical IR.

Regarding Doc2Vec inference, we observe that in general more words on
both the query and the document side, lead to a lower ranking quality. We
assume that the semantics of the queries or documents are cluttered by
numerous of too generic words. The only exception is the configuration of
short queries and abstracts of the NTCIR2 dataset. In this case Doc2Vec
was the only technique whose performance could be improved with using
abstracts instead of titles. This behaviour can be explained by Doc2Vec’s
more sophisticated approach of creating a document representation by
inference. However, Doc2Vec inference was not able to attain a ranking
quality competitive to IWCS in our experiments.

As a limitation, we note that all embedding-based retrieval models do
not tackle the complete vocabulary mismatch problem (the document
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does not contain a single word of the query). Leaving out the matching
operation decreases the performance of all embedding-based techniques
considerably.

1.7 Conclusion

We confirm that word embeddings can be successfully employed in a
practical information retrieval setting. The proposed cosine similarity of
aggregated, IDF re-weighted word vectors is competitive to the TF-IDF
baseline and even outperforms it in case of the news domain with a relative
percentage of 15%.
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Chapter 2

User’s guide

Figure 2.1. Detailed information retrieval pipeline as considered in the vec4ir

framework. With the query node as starting point, each out-going edge is a
configurable option of the native evaluation script. Rectangles resemble algorithms,
and folder-like shapes resemble data stored on disk. One example configuration is
highlighted by bold edges.
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2.1 Philosophy

The information retrieval framework vec4ir is not designed for production
usage. Rather, the target is to simulate a practical information retrieval
setting. In order to encourage research in this field, the focus lies on
extensibility. Adding a new retrieval model for evaluation should be as
easy as possible. The target audience are researchers evaluating their own
retrieval models and curious data scientists, who want to evaluate which
retrieval model fits their data best.

2.2 Terminology

In the following, We recapture the most important definitions that are
relevant to the framework.

2.2.1 Information Retrieval (IR)

The information retrieval task can be defined as follows:

Given a corpus of documents D and a query q, return {d P D | d relevant to q}
in rank order.

A practical information retrieval system typically consists of at least the two
components: matching, similarity scoring. Several other components can
also be considered, such as query expansion, pseudo-relevance feedback,
query parsing and the analysis process itself.

2.2.2 Matching

The matching operation refers to the initial filtering process of documents.
In its easiest way the output of the matching operation contains all the
document which contain at least one of the query terms. Other variants of
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the matching operation may also allow fuzzy matching (up to a certain
threshold in Levenshtein distance) or query expansion.

2.2.3 Similarity scoring

The scoring step refers to the process of assigning scores. The scores
resemble the relevance of a specific document to the query. They are
used to create a ranked ordering of the matched documents. This sorting
happens either ascending, when considering distance scores, or descending
in case of similarity scores.

2.2.4 Word embeddings and Word2Vec

A word embedding is a distributed (dense) vector representation for each
word of a vocabulary. It is capable of capturing semantic and syntactic prop-
erties of the input texts [MSC+13; PSM14]. Interestingly, even arithmetic
operations on the word vectors are meaningful: e.g. ‘King‘´ ‘Queen‘ =
‘Man‘´ ‘Woman‘. The two most popular approaches to learn a word em-
bedding from raw text are:

Ź Skip-Gram Negative Sampling by Mikolov et al. [MSC+13] (Word2Vec)
Ź Global Word Vectors by Pennington, Socher, and Manning [PSM14]

(GloVe)

Skip-gram negative sampling (or Word2Vec) is an algorithm based on
a shallow neural network which aims to learn a word embedding. It is
highly efficient, as it avoids dense matrix multiplication and does not
require the full term co-occurrence matrix. Given some target word wt,
the intermediate goal is to train the neural network to predict the words
in the c-neighbourhood of wt: wt´c, . . . , wt´1, wt+1, . . . , wt+c. First, the
word is directly associated to its respective vector, which as used as
input for a (multinomial) logistic regression to predict the words in the
c-neighbourhood. Then, the weights for the logistic regression are adjusted,
as well as the vector itself (by back-propagation). The Word2Vec algorithm
employs negative sampling: additional k noise words which do not appear
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in the c-neighbourhood are introduced as possible outputs, for which the
desired output is known to be false. Thus, the model does not reduce
the weights to all other vocabulary words but only to those sampled k
noise words. When these noise words appear in a similar context as wt,
the model gets more and more fine-grained over the training epochs. In
contrast to word to Word2Vec, the GloVe [PSM14] algorithm computes
the whole term co-occurrence matrix for a given corpus. To obtain word
vectors, the term co-occurrence matrix is factorised. The training objective
is that the euclidean dot product of each two word vectors match the
log-probability of their words’ co-occurrence.

2.2.5 Word centroid similarity (WCS)

An intuitive approach to employ word embeddings in information re-
trieval is the word centroid similarity (WCS). The representation for each
document is the centroid of its respective word vectors. Since word vectors
carry semantic information of the words, it is assumed that the centroid
carries a notion of similarity. At query time, the centroid of the query’s
word vectors is computed and the cosine similarity to the centroids of the
(matching) documents is used as a measure of relevance. When the initial
word frequencies of the queries and documents are first re-weighted ac-
cording to inverse-document frequency (i.e. frequent words in the corpus
are discounted), the technique is labelled IDF re-weighted word centroid
similarity (IWCS).

2.3 Features

The key features of this information retrieval framework are:

Ź Simulation of a practical IR setting
Ź Native word embedding support in conjunction with gensim [ŘS10])
Ź Built-in evaluation
Ź API design inspired by sklearn [BLB+13] .
Ź Extendable by new retrieval models
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2.4 Dependencies

Besides python3 itself, the package vec4ir depends on the following python
packages.

Ź numpy 1

Ź scipy 2

Ź gensim 3

Ź pandas 4

Ź networkx 5

Ź rdflib 6

Ź nltk 7

Ź sklearn 8

Ź pyyaml 9

Ź pyemd 10

2.5 Installation

As vec4ir is packaged as a python package, it can be installed by via
python setuptools:

cd python-vec4ir; python3 setup.py install

In case anything went wrong with the installation of dependencies, try to
install them manually: We also recommend to install numpy and scipy in
beforehand (either manually, or as binary system packages).

1http://www.numpy.org/
2http://www.scipy.org/
3http://radimrehurek.com/gensim/
4http://pandas.pydata.org/
5https://networkx.github.io/
6https://rdflib.readthedocs.io/en/stable/
7http://www.nltk.org/
8http://scikit-learn.org/stable/index.html
9http://pyyaml.org/wiki/PyYAMLDocumentation

10https://github.com/wmayner/pyemd
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pip3 install -r requirements.txt

In addition, we provide a helper script to setup a new virtual environ-
ment. It can be invoked setup.sh <venv-name> to setup a new virtual
environment in the current working directory. The newly created virtual
environment has to be activated via source <venv-name> before performing
the actual installation steps as described above.

2.6 The evaluation script

The package includes a native command line script ir_eval.py for evalu-
ation of an information retrieval pipeline (See Figure 2.1). The pipeline
of query expansion, matching and scoring is applied to a set of queries
and the metrics mean average precision (MAP), mean reciprocal rank
(MRR), normalised discounted cumulative gain (NDCG), precision and
recall are computed. Hence, the script may be used as-is for evaluation
of your datasets or as a reference implementation for the usage of the
framework. The behaviour of the evaluation script and the resulting infor-
mation retrieval pipeline can be controlled by the following command-line
arguments:

Meta options

As a meta option (affecting other options), we allow the specification of a
configuration file.

Ź -c, --config Path to a configuration file, in which the file paths for
the datasets and embedding models are specified. The default value is
config.yml.

General options

Ź -d, --dataset The data set to operate on. (mandatory)
Ź -e, --embedding The word embedding model to use. (mandatory)
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Ź -r, --retrieval-model The retrieval model for similarity scoring. One
of tfidf (default), wcd, wmd, d2v.

Ź -q, --query-expansion The expansion technique to apply on the
queries. One of wcd, eqe1, eqe2.

The arguments --dataset and --embedding expect the provided keys to be
present in the configuration file specified by --config. While the key for
the embedding should be below embeddings in the configuration file, the
key for the dataset should be below data. An minimal example structure
would be:

embeddings:

word2vec: # possible value for --embedding

path: "/path/to/GoogleNews-vectors-negative300.bin.gz"

data:

short-ntcir2: # possible value for --dataset

type: "ntcir"

root_path: "path/to/data/NTCIR2/"

field: "title"

topic: "title"

rels: 2

The options below the respective keys specify the responsible construc-
tor (type) and its arguments (root_path, field, . . .). More details on the
natively supported dataset formats can be found in the developer’s guide.
The alternatives for the retrieval model (--retrieval-model) are described
in more detail in Section 2.8.

Embedding options

Ź -n, --normalize Normalise the embedding model’s word vectors.
Ź -a, --all-but-the-top All-but-the-top embedding post-processing as

proposed by Mu, Bhat, and Viswanath [MBV17] .
Ź -t, --train Number of epochs used for up-training out-of-vocabulary

words.

In the special case of --train 0 the behaviour of the script is not equivalent
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to omitting this parameter. After building a vocabulary from the input
documents, the word vectors are intersected with the word vectors of
the embedding. More specific, missing vocabulary words are initialised
with close-to-zero random vectors. Instead, out-of-vocabulary words are
ignored, when the --train parameter is omitted.

Retrieval options

Ź -I, --no-idf Do not use IDF re-weighted word frequencies for aggre-
gation of word vectors.

Ź -w, --wmd Fraction of additional documents to take into account for wmd

retrieval model.

By default, ir_eval.py uses IDF re-weighted word centroid similarity if
-r wcd is provided. If IDF re-weighting is not desired, it is necessary to
provide the --no-idf argument. The --wmd argument refers to the fraction
of additional documents to consider, when the Word Mover’s distance (-r
wmd) was chosen as retrieval model. For example, consider --wmd 0.1 and
120 matching documents for a specific query. When 20 documents should
be retrieved, the word centroid similarity is consulted to retrieve the top
20 + 0.1 ¨ (120´ 20) = 30 documents. These 30 most relevant (with respect
to word centroid similarity) documents are then be re-ranked according
to the Word Mover’s distance. A --wmd value of zero corresponds to re-
ranking the top k documents by Word Mover’s distance, while the highest
possible value of 1.0 corresponds to computing the full Word Mover’s
distance without taking the WCS into account.

Output options

The output options control the online and persistent output of the evalu-
ation script. The special option --stats can be provided to compute the
ratio of out-of-vocabulary tokens, print the top 50 most frequent out-of-
vocabulary tokens and exit.

Ź -o, --output File path for writing the output.
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Ź -v, --verbose Verbosity level.
Ź -s, --stats Compute out-of-vocabulary statistics and exit.

Evaluation options

The following arguments affect the evaluation process:

Ź -k Number of documents to retrieve (defaults to 20).
Ź -Q, --filter-queries Drop queries, which contain out-of-vocabulary

words.
Ź -R, --replacement Treatment for missing relevance information in the

gold standard. Chose drop to disregard them (default) or zero to treat
them as non-relevant.

In most cases, the defaults of not filtering the queries and replacing missing
values by zeroes (indicating non-relevance) are appropriate.

Analysis options

The analysis process of splitting a string into tokens can be customised by
the following arguments:

Ź -M, --no-matching Do not conduct a matching operation.
Ź -T, --tokenizer The tokeniser for the matching operation. One of

sklearn, sword, nltk.
Ź -S, --dont-stop Do not remove English stop-words.
Ź -C, --cased Conduct a case sensitive analysis.

Please note that the analysis process, also directly affects the matching
operation. The defaults are to conduct a matching operation, tokenise
according to sklearn tokeniser [PVG+11] (a token consists of at least two
subsequent word-characters), remove English stop-words and transform
all characters to lower case. The sword tokeniser additionally considers
single-character words as token. The nltk tokeniser retains all punctuation
punctuation as tokens [Bir06].
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2.7 Basic framework usage

We provide a minimal example including the matching operation and the
TF-IDF retrieval model. As an example, assume we have two documents
fox valley and dog nest and two queries fox and dog. First, we create
an instance of the Matching class, whose optional arguments are passed
directly to sklearn’s CountVectorizer.

>>> match_op = Matching()

In its default form, the matching is a non-fuzzy boolean OR matching.
The Matching instance can be used after fitting a set of documents via
match_op.fit(documents) via its match_op.predict(query_string) method
to return the indices of the matching documents. However, the preferred
way to apply the matching operation is inside of a Retrieval instance.
The Retrieval instance expects a retrieval model as mandatory argument,
besides an optional Matching instance (and an optional query expansion
instance). For now, we create an instance of the Tfidf class and pass it to
the Retrieval constructor.

>>> tfidf = Tfidf()

>>> retrieval = Retrieval(retrieval_model=tfidf, matching=match_op)

>>> retrieval.fit(titles)

>>> retrieval.query("fox")

[0]

>>> retrieval.query("dog")

[1]

At index time, the Retrieval instance invokes the fit method on the
provided delegates of query expansion, matching and the retrieval model.
At query time, the Retrieval instance consults the predict method of the
matching argument for a set of matching indices. The matching indices are
passed as indices keyword argument to the query method of the retrieval
model. The result of the retrieval model is then transformed back into
respective the document identifiers.
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2.8 Employing word embeddings

Several supplied retrieval models make use of a word embedding. However
those retrieval models do not learn a word embedding themselves, but
take a gensim Word2Vec object as argument.

from gensim.models import Word2Vec

model = Word2Vec(documents['full-text'], min_count=1)

wcd = WordCentroidDistance(model)

RM = Retrieval(wcd, matching=match_op).fit(documents['full-text'])

Several embedding-based retrieval models are provided natively:

Ź Word centroid similarity The cosine similarity between centroid of the
document’s word vectors and the centroid of the query’s word vectors
(WordCentroidDistance(idf=False)).

Ź IDF re-weighted word centroid similarity The cosine similarity between the
document centroid and the query centroid after re-weighting the terms
by inverse document frequency (WordCentroidDistance(idf=True)).

Ź Word Mover’s distance The cost of moving from the words of the query to
the words of the documents is minimised. The optional complete param-
eter (between zero and one) allows to control the amount of considered
documents. Setting complete=0 results in re-ranking the documents
returned by word centroid similarity with respect to Word Mover’s Dis-
tance, while setting complete=1.0 computes the Word Movers distance
for all matched documents.

Ź Doc2Vec inference The Doc2VecInference class expects a gensim Doc2Vec

instance as base model instead of a Word2Vec object. The model is em-
ployed to infer document vectors for the documents and the queries.
The matching documents are ranked according to the cosine similarity
between inferred vectors of the query and the documents. The pa-
rameters alpha, min_alpha and epochs control the inference step of the
Doc2Vec instance.

All these provided embedding-based retrieval models are designed for
usage inside the Retrieval wrapper.
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2.9 Evaluating the model

To evaluate your retrieval model RM just invoke its evaluate(X, Y) method
with X being a list of (query_id, query_string) pairs. The gold standard Y

is a two-level data structure. The first level corresponds to the query_id

and the second level to the document_id. Thus Y[query_id][document_id]

should return the relevance number for the specific query-document pair.
The exact type of Y is flexible, it can be a list of dictionaries, a 2-dimensional
numpy array, or a pandas.DataFrame with a (hierarchical) multi-index.

scores = RM.evaluate(X, Y)

The evaluate(X, Y, k=None) method returns a dictionary of various com-
puted metrics per query. The scores can be manually reduced to their
mean afterwards with a dictionary comprehension:

import numpy as np

mean_scores = {k : np.mean(v) for k,v in scores.items()}

The metrics and therefore keys of the resulting scores dictionary consist
of:

Ź MAP Mean Average Precision (@k)

Ź precision Precision (@k)

Ź recall Recall (@k)

Ź f1_score Harmonic mean of precision and recall

Ź ndcg Normalised discounted cumulative gain (produces sensible scores
with respect to the gold standard, even if k is given)

Ź MRR Mean reciprocal rank (@k)

Where k is the number of documents to retrieve.
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2.10 Extending by new models

In order to create a new retrieval model, one has to implement a class with
at least two methods: fit(X) and query(query, k=None, indices=None). In
the following, we will demonstrate the implementation of a dummy re-
trieval model: the GoldenRetriever model which returns a random sample
of k matched documents.

import random as RNG

class GoldenRetriever(RetriEvalMixin):

def __init__(self, seed='bone'):

# Configuration

RNG.seed(seed)

def fit(self, documents):

# Keep track of the documents

self._fit_X = np.asarray(documents)

def query(self, query, k=None, indices=None):

# Pre-selected matching documents

if indices is not None:

docs = self._fit_X[indices]

else:

docs = self._fit_X

# Now we could do more magic with docs, or...

ret = RNG.sample(range(docs.shape[0]), k)

# Note that our result is assumed to be

# relative to the matched indices

# and NOT a subset of them

return ret

The newly developed class contains the following three mandatory meth-
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ods:

Ź The constructor All configuration is performed in the constructor, such
that the model is ready to fit documents. No expensive computation is
performed in the constructor.

Ź fit(self, documents) The fit method is called at index time, the re-
trieval model becomes aware of the documents and saves its internal
representation of the documents.

Ź query(self, query, k=None, indices=None) The query method is
called at query time. Beside the query string itself, it is expected to
allow two keyword arguments: k resembling the number of desired
documents, and indices which provides the indices of documents, that
matched the query.

The reduction of the models own view on the documents (docs = self._-

fit_X[indices]) is important, since the returned indices are expected to be
relative to this reduction (more details in the next section). These relative
indices provide one key benefit. Oftentimes, the documents identifiers are
not plain indices but string values. Using relative (to the matching) indices
allows our retrieval model to disregard the fact that the document identi-
fiers could be a string value or some other index, which does not match
the position in our array of documents X. The presumably surrounding
Retrieval class will keep track of the document identifiers for you and
transpose the query’s result ret to the identifier space.

The inheritance from RetriEvalMixin provides the evaluation method
described above, which internally invokes the query method of the new
retrieval model.

2.11 Matching, scoring, and query expansion

We provide a Retrieval class that implements the desired retrieval process
of Figure 2.1. The Retrieval class consists of up to three components. It
combines the retrieval model (mentioned above) as mandatory object and
two optional objects: a matching operation and a query expansion object.
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Upon invocation of fit(X) the Retrieval class delegates the documents X

to all prevalent components, i.e. it calls fit(X) on the matching object, the
query expansion object, and the retrieval model object. A query expansion
class is expected to provide two methods.

Ź fit(X) This method is invoked with the set of raw documents X

Ź transform(q) This method is invoked with the query string q and
should return the expanded query string.

We provide more details on the implementation of a full information
retrieval pipeline in the Developer’s Guide (See Chapter 3).

2.12 Combining multiple fields and models

The vec4ir package also provides an experimental operator overloading
API for combining multiple retrieval models.

RM_title = WordCentroidDistance().fit(documents['title'])

RM_content = Tfidf().fit(documents['full-text'])

RM = RM_title & RM_content # fuzzy and: x+y - x*y

R = Retrieval(retrieval_model=RM)

On invocation of the query method on the combined retrieval model RM,
both the model for the title and the model for the content get consulted
and their respective scores are merged according to the operator. Operator
overloading is provided for addition, multiplication and binary AND opera-
tor which implements FUZZY-AND x&y = x + y´ x ¨ y. For these Combined

retrieval models, the consulted operand retrieval models are expected to
return (doc_id, score) pairs in their result set. However, in this case the re-
sult set does not have to be sorted. Thus, the query method of the operand
retrieval models is invoked with sorted=False. Still, the combined retrieval
model RM keeps track of its nesting, such that the outer-most Combined

instance will return a sorted list of results.
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Chapter 3

Developer’s guide

The developer guide is targeted to people that want to extend or under-
stand the functionality of the vec4ir package. We will go through the
implementation details in a top-down manner (See Figure 3.1). We start
with the core functionality (Section 3.1). Then, we describe the implemen-
tation of the matching operation (Section 3.2), provided retrieval models
(Section 3.3), query expansion techniques (Section 3.4) and helpful utilities
(Section 3.5) in detail. The API design of vec4ir is heavily inspired by the
one of sklearn [BLB+13].

Core functionality (1)

Matching operation (2) Retrieval models (3) Query expansion (4)

Utilities (5)

Figure 3.1. Structure of the developer guide. Arrows resemble an ‘is used in’-
relation.
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3.1 Core functionality

The core functionality includes all functionality required for setting up
a retrieval model and evaluating it. It consists of a generic information
retrieval pipeline implementation, embedded vectorisation (i.e. word vector
aggregation) along with the evaluation of retrieval models.

3.1.1 The retrieval class

The Retrieval class wraps the functionality of the matching operation,
query expansion and similarity scoring.

Constructor

In the constructor, the references to the retrieval model, the matching
operation and the query expansion instances are stored. Additionally,
users may set an identifier name for their composition of retrieval models.
The labels_ property will be filled on invoking fit.

def __init__(self, retrieval_model, matching=None,

query_expansion=None, name='RM'):

BaseEstimator.__init__(self)

self._retrieval_model = retrieval_model

self._matching = matching

self._query_expansion = query_expansion

self.name = name

self.labels_ = None

The fit method

Upon fit(X[, y]), the respective Retrieval instance (as a whole) fits
the documents. The fit method is called on the delegates of retrieval
model instance as well as the matching or query expansion instances (if
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provided). If additional document identifiers are provided as argument
y to fit, then these are stored inside the labels_ property, such that in
all further computation, the indices of X may be used for accessing the
documents.

def fit(self, X, y=None):

assert y is None or len(X) == len(y)

self.labels_ = np.asarray(y) if y is not None else np.arange(len(X))

if query_expansion:

self._query_expansion.fit(X)

if matching:

self._matching.fit(X)

self._retrieval_model.fit(X)

The query method

The query(q[, k]) methods allows to query the Retrieval instance for k

relevant documents to the query string q. First, in case a query expansion
delegate is provided, it is called to transform the q according to the respec-
tive query expansion strategy. In a second step the matching operation is
conducted (formally also optional) by invocation of its predict method.
The predict method is expected to return a set of indices that matched
the query q. The result of the matching operation ind is used in two ways.
On the one hand, it is passed to the query method of the delegate of the
retrieval model, such that it may (and should) reduce its internal represen-
tation according to the matching indices. On the other hand the view on
the stored labels is reduced by labels = labels[ind]. The benefit of this
reduction is that the relative indices retrieved_indices, returned by the
retrieval model, can be used for accessing the labels array directly. Hence,
the original document identifiers are restored. In between, we assert that
the retrieval model does not return more than k documents by slicing
retrieved_indices = retrieved_indices[:k] the top k indices.
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def query(self, q, k=None):

labels = self.labels_

if self._query_expansion:

q = self._query_expansion.transform(q)

if self._matching:

ind = self._matching.predict(q)

if len(ind) == 0:

return []

labels = labels[ind] # Reduce our own view

else:

ind = None

retrieved_indices = self._retrieval_model.query(q, k=k, indices=ind)

if k is not None:

retrieved_indices = retrieved_indices[:k]

return labels[retrieved_indices]

3.1.2 Embedded vectorisation

Since vec4ir is dedicated to embedding-based retrieval models, a class
is provided that aggregates word vectors according to the respective
term-document frequencies. We call this process “embedded vectorisa-
tion”. The EmbeddedVectorizer extends the behaviour of sklearn.feature_-
extration.text.TfidfVectorizer as a subclass.

Constructor

In the constructor, the index2word property of the word vectors embedding

is used to initialise the vocabulary of its super class TfidfVectorizer. This
results in the crucial property that the indices of the embedding model and
the transformed term-document matrix of the TfidfVectorizer correspond
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to each other. All additional arguments of the constructor are passed di-
rectly to the TfidfVectorizer so that its functionality is completely retained.
Most notably, passing use_idf=False disables the discounting of frequent
terms over the collection (which is enabled by default). If normalize=True
is given, the word frequencies are normalised to unit L2-norm for each
document.

def __init__(self, embedding, **kwargs):

vocabulary = embedding.index2word

self.embedding = embedding

TfidfVectorizer.__init__(self, vocabulary=vocabulary, **kwargs)

Fitting and transforming

The fit method call is passed to the delegate of the super class
TfidfVectorizer.

def fit(self, raw_docs, y=None):

super().fit(raw_docs)

return self

In the transform(raw_documents, y=None) method, we also start with the
invocation of the transform method of the superclass. The obtained Xt

are the term frequencies of the documents. Depending on the parameters
passed to the TfidfRetrieval super class in the constructor, the values of
Xt are already re-weighted and normalised to unit L2-norm. In the final
step we aggregate the word vectors with a single matrix multiplication Xt

@ syn0. Thus, word frequency with unit L2-norm will result in the centroid
of the respective embedding word vectors.

def transform(self, raw_documents, y=None):

Xt = super().transform(raw_documents)

# Xt is sparse matrix of word frequencies

syn0 = self.embedding.syn0

# syn0 are the word vectors

return (Xt @ syn0)
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3.1.3 Evaluation

For convenient evaluation, we provide the RetriEvalMixin class. A retrieval
model class, that implements a query(q[, k]) method, may inherit the
provided evaluate method from the RetriEvalMixin class. The evaluate

method is an interface for executing a set of queries by a single call
and computing various ranking metrics mean average precision, mean
reciprocal rank, normalised discounted cumulative gain, precision, recall,
F1-score, precision@5, precision@10 as well as the respond time in seconds.
The evaluate method expects the following arguments:

Ź X list of query identifier and query string pairs

Ź Y the gold standard, either a dictionary of dictionaries, a
pandas.DataFrame with hierarchical index or an numpy / scipy.sparse

array-like. The outer index is expected to be the query identifiers while
the inner index needs to correspond to the document identifiers. A
value greater than zero indicates relevance. Greater values indicate
more relevance.

Ź k The desired amount of documents to retrieve. Except for precision@5
and precision@10, all metrics are computed with respect to this param-
eter.

Ź verbose Controls whether intermediate results should be printed to
stdout.

Ź replacement The value to use for documents which could not be found
in Y for the specific query identifier. The default value is zero. Hence
missing query-document pairs are regarded non-relevant.

Ź n_jobs If greater than 1, the evaluation will be executed in parallel (not
supported by all retrieval models).

The evaluate method of the RetriEvalMixin class is implemented as fol-
lows:

def evaluate(self, X, Y, k=20, verbose=0, replacement=0, n_jobs=1):

# ... multi-processing code ...

values = defaultdict(list)
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for qid, query in X:

t0 = timer()

result = self.query(query, k=k)

values["time_per_query"].append(timer() - t0)

scored_result = [harvest(Y, qid, docid, replacement)

for docid in result]

r = scored_result[:k] if k is not None else scored_result

# NDCG

gold = harvest(Y, qid)

idcg = rm.dcg_at_k(gold[argtopk(gold, k)], k)

ndcg = rm.dcg_at_k(scored_result, k) / idcg

values["ndcg"].append(ndcg)

# MAP@k

ap = rm.average_precision(r)

values["MAP"].append(ap)

# MRR

ind = np.asarray(r).nonzero()[0]

mrr = (1. / (ind[0] + 1)) if ind.size else 0.

values["MRR"].append(mrr)

# ... other metrics ... #

return values

3.2 Matching operation

The matching operation is implemented in the Matching class and designed
to be employed as a component of the Retrieval class. The interface to
implement for a custom matching operation is:

Ź In the fit(raw_documents) method, an internal representation of the
documents is stored.

Ź The predict(query) returns the index set of matching documents.
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3.2.1 A generic matching class

The generic Matching class reduces the complexity of adding a matching
algorithm to the implementation a single function. The default repre-
sentation is a binary term-document matrix which should suffice for all
boolean models. The representation is computed by an sklearn.feature_-

extraction.text.CountVectorizer. This process can be further customised
by users, since additional keyword arguments are passed directly to the
CountVectorizer.

def __init__(self, match_fn=TermMatch, binary=True, dtype=np.bool_,

**cv_params):

self._match_fn = match_fn

self._vect = CountVectorizer(binary=binary, dtype=dtype,

**cv_params)

Upon calling predict, the matching function match_fn is employed to
compute the index set of the matching documents. Hence, the user can
customise the behaviour (conjunctive or disjunctive) of each Matching

instance by passing a function to the constructor. The match_fn function
object is expected to return the matching indices, when provided with
the term-document matrix X and the query string: match_fn(X, q) Ñ

matching_indices.

3.2.2 Disjunctive Matching

Disjunctive (OR) matching of single query terms is the default query parsing
method for most information retrieval systems. Thus, the framework
provides a dedicated function for it, which is also the default value of the
match_fn argument for the constructor of the Matching class.

def TermMatch(X, q):

inverted_index = X.transpose()

query_terms = q.nonzero()[1]

matching_terms = inverted_index[query_terms, :]

matching_doc_indices = np.unique(matching_terms.nonzero()[1])
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return matching_doc_indices

First, the index is inverted and the indices of the query tokens are extracted
by finding the np.nonzero entries in the second dimension [1]. Second, we
look up the indices of the query tokens in the inverted index. Finally, we
only keep one index for each the matching document by calling np.unique.

3.3 Retrieval models

3.3.1 TF-IDF

The Tfidf class implements the popular retrieval model based on TF-
IDF re-weighting introduced by Salton and Buckley [SB88]. The term
frequencies of a document are scaled by the inverse document frequency
of the specific terms in the corpus D [PVG+11]:

t f id f (t, d, D) = t f (t, d) ¨ id f (t, D)

The t f (t, d) is the number of occurrences of the word t in the document d:

t f (t, d) = freq(t, d)

The inverse document frequency is a measure for the fraction of documents
that contain some term t:

id f (t, D) = log N
|{dPD:tPd}|

The Tfidf retrieval model extends the TfidfVectorizer of sklearn the
Tfidf. The documents are stored as an L2-normalised matrix of IDF re-
weighted word frequencies. After transforming the query in the same way,
we can compute the cosine similarity to all matching documents. As both
the query and the documents are L2-normalised, the linear kernel yields
the desired cosine similarity. Finally we use the function argtopk (See
Section 3.5.1) to retrieve the top-k documents with respect to the result of
the linear kernel.

class Tfidf(TfidfVectorizer):

def __init__(self, analyzer='word', use_idf=True):
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TfidfVectorizer.__init__(self,

analyzer=analyzer,

use_idf=use_idf,

norm='l2')

self._fit_X = None

def fit(self, X):

Xt = super().fit_transform(X)

self._fit_X = Xt

return self

def query(self, query, k=None, indices=None):

if self._fit_X is None:

raise NotFittedError

q = super().transform([query])

if indices is not None:

fit_X = self._fit_X[indices]

else:

fit_X = self._fit_X

# both fit_X and q are l2-normalised

D = linear_kernel(q, fit_X)

ind = argtopk(D[0], k)

return ind

3.3.2 Word centroid similarity

The word centroid similarity aggregates the word vectors of the docu-
ments to their centroids. It is implemented in the WordCentroidSimilarity

class. The implementation makes extensive use of the EmbeddedVectorizer

(See Section 3.1.2) class for aggregation of word vectors. Hence, it is
possible to choose between using IDF re-weighted word frequencies or
plain word frequencies for aggregation. The parameters passed to the
EmbeddedVectorizer delegate could be further extended. The current im-
plementation limits the possible configuration to the single parameter
use_idf. Providing use_idf=True results in IDF re-weighted word centroid
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similarity.

class WordCentroidSimilarity(BaseEstimator):

def __init__(self, embedding, analyzer='word', use_idf=True):

self.vect = EmbeddedVectorizer(embedding,

analyzer=analyzer,

use_idf=use_idf)

self.centroids = None

def fit(self, X):

Xt = self.vect.fit_transform(X)

Xt = normalize(Xt, copy=False)

self.centroids = Xt

def query(self, query, k=None, indices=None):

centroids = self.centroids

if centroids is None:

raise NotFittedError

if indices is not None:

centroids = centroids[indices]

q = self.vect.transform([query])

q = normalize(q, copy=False)

# l2 normalised, so linear kernel

D = linear_kernel(q, centroids)

ret = argtopk(D[0], k=k)

return ret

Please note, that the aggregated centroids need to be re-normalised to unit
L2-norm (even if the word frequencies were normalised in the first place),
so that the linear_kernel corresponds the cosine similarity. Finally, the
results of the linear kernel are ranked by the argtopk (See Section 3.5.1)
function.
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3.3.3 Word Mover’s distance

In order to compute the Word Mover’s distance [KSK+15], we employ
the gensim implementation Word2Vec.wmdistance [ŘS10]. Additionally, we
make the analysis function analyze_fn as well as a completeness param-
eter complete available as arguments to the constructor. The analyze_-

fn argument is expected to be a function that returns a list of tokens,
given a string. The parameter complete allows specification whether the
full Word Mover’s distance to all documents or only to the top k doc-
uments returned by WordCentroidSimilarity should be computed. The
WordCentroidSimilarity is in turn customisable via the use_idf construc-
tor argument. The complete parameter is expected to be a float value
between 1 (compute the Word Mover’s distance to all documents) and 0
(only compute the Word Mover’s distance to the documents returned by
WCS). A fraction in between takes the corresponding amount of additional
documents into account. The crucial functionality can be summarised in
the following lines of code.

incomplete = complete < 1.0

# inside fit method

docs = np.array([self.analyze_fn(doc) for doc in raw_docs])

if incomplete:

self.wcd.fit(raw_docs)

# inside query method

if incomplete:

wcd_ind = self.wcd.query(query, k=n_req, indices=indices)

docs = docs[wcd_ind]

q = self.analyze_fn(query)

dists = np.array([self.embedding.wmdistance(q, d) for d in docs])

ind = np.argsort(dists)[:k]

if incomplete:

# stay relative to the matching indices

ind = wcd_ind[ind]

56



3.3. Retrieval models

3.3.4 Doc2Vec inference

The Doc2VecInference class implements a retrieval model based on a para-
graph vector model [LM14], i.e., Doc2Vec from gensim [ŘS10]. Given an
existing Doc2Vec model, it is used to infer the document vector of a new
document. We store these inferred document vectors and also infer a
document vector for the query at query time. Afterwards, we compute the
cosine similarity of all matching documents to the query and return the
respective indices in descending order. The inference step considers three
hyper-parameters:

Ź alpha The initial learning rate

Ź min_alpha The final learning rate

Ź steps The number of training epochs

The inference process itself (provided by gensim) runs steps training
epochs with fixed weights and a linearly decaying learning rate from
alpha to min_alpha. As the model does operate on a list of tokens, an
analyser is required to split the documents into tokens. We compute the
representation of the documents (as well as the query) as follows:

analyzed_docs = (analyzed(doc) for doc in docs)

representation = [doc2vec.infer_vector(doc,

steps=self.epochs,

alpha=self.alpha,

min_alpha=self.min_alpha)

for doc in analyzed_docs]

representation = normalize(np.asarray(representation), copy=False)

The final normalisation step prepares the computation of the cosine simi-
larity with a linear kernel. At query time, the cosine similarity between
the vectors of the query and the documents is computed. The documents
are then ranked in descending order.
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3.4 Query expansion

All query expansion techniques should implement the following interface:

Ź fit(raw_documents) Fits the query expansion technique to the raw doc-
uments.

Ź tranform(query) Expands the query string.

As two implementations of this interface, we present the naive centroid
based expansion as well as embedding-based query language models by
Zamani and Croft [ZC16] . Please note, that for research it is strongly
recommended to reduce the employed word embedding to the tokens
that actually appear in the collection. Otherwise, words could be added to
the query, that never appear in the collection and thus, do not affect the
matching operation.

3.4.1 Centroid Expansion

Centroid expansion is a query expansion technique that computes the
(possibly IDF re-weighted) centroid v of the query. It expands the query
by the m nearest words with respect to the cosine distance to v. As a
first step, we once again compute the centroid vector of the query us-
ing the EmbeddedVectorizer after fitting the collection (to build a vocabu-
lary). Then, we employ the similar_by_vector method provided by the
gensim.models.Word2Vec class to obtain the nearest tokens.

## inside transform method

v = vect.transform([query])[0]

exp_tuples = wv.similar_by_vector(v, topn=self.m)

words, __scores = zip(*exp_tuples)

expanded_query = query + ' ' + ' '.join(words)
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3.4.2 Embedding-based query language models

The embedding-based query language models proposed by Zamani and
Croft [ZC16] includes two techniques for query expansion (EQE1 and
EQE2), both rely on the underlying probability distribution based on the
(weighted) sigmoid of the cosine similarity between terms. While EQE1

assumes statistical independence of the query terms, EQE2 assumes query-
independent term similarities. The probabilities of the respective query
language models are defined with respect to a delta function. The delta

function transforms the cosine distance between two word vectors by a
parametrised sigmoid function. We implement this behaviour in a dedi-
cated delta function:

def delta(X, Y=None, n_jobs=-1, a=1, c=0):

D = pairwise_distances(X, Y, metric="cosine", n_jobs=n_jobs)

D -= c

D *= a

D = expit(D)

return D

We compute the pairwise distances for all word vectors D = delta(E,E).
While both variants are implemented in the framework, we only present
the computation of the EQE1 variant:

prior = np.sum(D, axis=1)

conditional = D[q] / prior

posterior = prior * np.product(conditional, axis=0)

topm = np.argpartition(posterior, -m)[-m:]

expansion = [wv.index2word[i] for i in topm]

3.5 Utilities

3.5.1 Sorting only the top k documents

When dealing with retrieval models, a common operation is to retrieve
the top k indices from a list of scores in sorted order. Sorting the complete
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list and then slicing the top k documents would lead to unnecessary com-
putation. Thus, vec4ir includes a useful helper function for this specific
operation: argtopk. The function makes extensive of numpy.argpartion,
which performs one step of the quicksort algorithm. On invocation by
np.argpartition(A, k), the element at position k of the returned index
set is at the correct (with respect to sorted order) position. All indices
i = 0, . . . , k´ 1 smaller than k also have smaller values A[i] <= A[k]. Since
we are interested in the k highest values, we invoke argpartition with -k

and slice the top k values by [-k:].

def argtopk(A, k=None):

A = np.asarray(A)

if k is None or k >= A.size:

# if A contains too few elements or k is None,

# return all indices in sort order

return np.argsort(A, axis=axis)[::-1]

ind = np.argpartition(A, -k, axis=-1)[-k:]

ind = ind[np.argsort(A[ind], axis=-1)][::-1]

return ind

3.5.2 Harvesting the gold standard

The RetriEvalMixin (as described in Section 3.1.3) allows several different
data types for the gold standard Y. We provide a unifying function harvest

to extract the relevance score for the desired respective query-document
pair for all of the supported data types. The immediate benefit is that the
data neither has to be transformed nor copied before calling evaluate on
the implementing class. Additionally, the function can be used to obtain
the whole set of values for one specific query (docid=None). On the one
hand, the desired behaviour is to raise an exception, if a query identifier is
not found in the gold standard. On the other hand, missing values for the
document identifier for one specific query should not raise an exception
but return the default value (typically zero). The latter behaviour can
also be achieved by using a defaultdict or a sparse matrix as inner data
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structure. However, we want to relief the user from those issues. The
harvest function takes the following arguments:

Ź source The gold standard of query-document relevance, a two-
level data structure with type either DataFrame, dict of dicts or
two-dimensional ndarray,

Ź query_id The query identifier to use as index for the first level of source.

Ź doc_id If None return a list of relevance scores for the query given by
query_id, else look up the doc_id in the second level of source.

Ź default The default value in case a document identifier is not found
on the second level (typically zero).

In the implementation, we first access the query_id of the source and raise
an exception if query_id is not prevalent in source. In a second step, we
look up doc_id on the second level of the data structure and return the
value. If the second step fails, the default value is returned instead.

3.5.3 Datasets

An interface for datasets

We introduce IRDataSetBase as an abstract base class for the data sets.
Subclasses should implement the following properties:

Ź docs : Returns the documents of the corpus.

Ź topics : Returns the topics, i.e. the queries.

Ź rels : Returns the relevance judgements for the queries either as a dict

of defaultdicts or as a pandas.Series object with a hierarchical index
(multi-index).

All other options for the data set (such as the path to its root directory and
caching) should be placed in the respective constructor. As an example
subclass of the IRDataSetBase, we present the Quadflor-like dataset format.
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Quadflor-like Dataset Format

For convenience we adopt the data set format and specification from Quad-
flor1. Quadflor is a framework for multi-label classification. A Quadflor-
like data set consists of

Ź X The documents, either a directory of files with the base filename
resembles the idea

Ź y The gold standard: label annotations for the documents. CSV file with
document id in the first column, and subsequent columns resemble
label identifier.

Ź thes A thesaurus consisting of a hierarchy of concepts.

In our prior work on Quadflor, the gold standard y was used as target
labels in a multi-label classification task. We employ the data set in a
different manner. We extract the preferred labels of each concept from the
thesaurus thes and use them as queries. When the label annotations (y)
for some document contain the specific concept identifier, we consider the
document as relevant to the query.

1https://github.com/quadflor/Quadflor
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Summary

In summary, a comparative evaluation of embedding-based document
representations and query-document similarities for practical information
retrieval has been conducted. A novel technique for the aggregation of
word vectors via IDF re-weighted word frequencies has been proposed.
The associated IDF re-weighted word centroid similarity is competitive to
the TF-IDF baseline and even outperforms it in case of the news domain
with a relative percentage of 15%.

For the evaluation, an information retrieval framework that simulates a
practical information retrieval setting has been developed. As the frame-
work is designed for researchers, it provides convenient evaluation is
extendable by new techniques. In addition, a possible integration of the
word centroid similarity into an existing information retrieval framework
is provided in Appendix B.
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Appendix A

Extended results

A.1 Effect of word vector normalisation

We investigate the influence of normalising the word vectors to unit length,
prior to their aggregation.

Table A.1. The effect of word vector normalisation on word centroid similarity for
the NTCIR2 dataset using short queries and either the title or the full-text field with
respect to the evaluation metrics mean average precision (MAP), mean reciprocal
rank (MRR) and normalised discounted cumulative gain (NDCG), limited to k=20
retrieved documents

Field title full-text

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .46 (.38) .55 (.45) .19 (.18) .35 (.37) .41 (.43) .18 (.20)

normalised word vectors

WCSGLV .37 (.36) .42 (.42) .16 (.18) .29 (.31) .40 (.43) .15 (.17)
WCSW2V .33 (.34) .35 (.38) .14 (.16) .33 (.35) .39 (.43) .13 (.15)
IWCSGLV .41 (.36) .49 (.44) .18 (.18) .32 (.32) .39 (.41) .17 (.18)
IWCSW2V .38 (.35) .45 (.43) .17 (.18) .36 (.34) .42 (.41) .17 (.18)

non-normalised word vectors

WCSGLV .36 (.36) .43 (.42) .16 (.18) .28 (.29) .37 (.41) .15 (.17)
WCSW2V .30 (.35) .35 (.41) .14 (.17) .33 (.33) .39 (.40) .15 (.17)
IWCSGLV .39 (.36) .46 (.43) .18 (.17) .31 (.32) .37 (.40) .17 (.18)
IWCSW2V .33 (.34) .39 (.41) .15 (.17) .33 (.32) .40 (.40) .16 (.17)
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Regarding the results for the NTCIR2 dataset with short queries (See
Table A.1), we observe, that the MAP values are consistently higher in case
of normalised word vectors.

Table A.2. The effect of word vector normalisation on word centroid similarity for
the NTCIR2 dataset using long queries and either the title or the full-text field with
respect to the evaluation metrics mean average precision (MAP), mean reciprocal
rank (MRR) and normalised discounted cumulative gain (NDCG), limited to k=20
retrieved documents

Field title abstract

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .40 (.29) .51(.39) .20 (.15) .35 (.32) .47 (.43) .20 (.21)

normalised word vectors

WCSGLV .29 (.29) .38 (.41) .15 (.16) .27 (.26) .35 (.37) .14 (.14)
WCSW2V .30 (.26) .38 (.38) .15 (.15) .30 (.32) .37 (.41) .13 (.14)
IWCSGLV .37 (.34) .45 (.43) .17 (.16) .33 (.30) .44 (.41) .16 (.16)
IWCSW2V .41 (.35) .50 (.41) .19 (.15) .36 (.33) .47 (.43) .17 (.16)

non-normalised word vectors

WCSGLV .31 (.29) .37 (.37) .16 (.15) .31 (.29) .42 (.41) .15 (.14)
WCSW2V .45 (.34) .45 (.44) .17 (.18) .33 (.31) .44 (.43) .16 (.17)
IWCSGLV .39 (.34) .49 (.41) .18 (.15) .33 (.30) .42 (.39) .17 (.17)
IWCSW2V .39 (.33) .46 (.40) .19 (.17) .35 (.29) .47 (.41) .18 (.16)

In case of long queries on the NTCIR2 dataset, we observe a drop in MAP
performance when using normalised word vectors for centroid similarity
along with the Word2Vec model (compare .45 to .30). For the IWCS, the
difference between normalised and non-normalised word vectors is small
(˘.02 MAP).
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Table A.3. The effect of word vector normalisation on word centroid similarity for
the Economics dataset using the title field with respect to the evaluation metrics
mean average precision (MAP), mean reciprocal rank (MRR) and normalised
discounted cumulative gain (NDCG), limited to k=20 retrieved documents

Field title

Metric MAP MRR NDCG

TF-IDF .37 (.38) .42 (.44) .26 (.30)

normalised word vectors

WCSGLV .36 (.37) .42 (.44) .25 (.29)
WCSW2V .36 (.37) .41 (.43) .25 (.29)

non-normalised word vectors

WCSGLV .36 (.37) .42 (.44) .25 (.29)
WCSW2V .36 (.37) .42 (.43) .26 (.29)

For the Economics dataset A.3 and the title field, we do only observe
minor differences between normalised and non-normalised word vectors.
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Table A.4. The effect of word vector normalisation on word centroid similarity for
the Reuters dataset using either the title or the full-text field with respect to the
evaluation metrics mean average precision (MAP), mean reciprocal rank (MRR)
and normalised discounted cumulative gain (NDCG), limited to k=20 retrieved
documents

Field title full-text

Metric MAP MRR NDCG MAP MRR NDCG

TF-IDF .52 (.35) .61 (.43) .41 (.32) .51 (.37) .58 (.43) .44 (.36)

normalised word vectors

WCSGLV .55 (.31) .63 (.40) .42 (.29) .51 (.33) .60 (.41) .44 (.33)
WCSW2V .54 (.33) .63 (.41) .43 (.31) .52 (.35) .57 (.41) .46 (.35)
IWCSGLV .58 (.31) .69 (.39) .45 (.29) .54 (.34) .63 (.41) .47 (.33)
IWCSW2V .60 (.33) .69 (.40) .47 (.32) .55 (.35) .60 (.41) .49 (.36)

non-normalised word vectors

WCSGLV .55 (.31) .65 (.40) .43 (.29) .52 (.33) .60 (.41) .45 (.33)
WCSW2V .57 (.33) .64 (.40) .46 (.31) .54 (.36) .60 (.42) .48 (.36)
IWCSGLV .60 (.32) .71 (.39) .46 (.29) .54 (.35) .63 (.42) .47 (.34)
IWCSW2V .59 (.33) .68 (.40) .48 (.32) .55 (.37) .59 (.42) .50 (.37)

A.2 Out-of-vocabulary statistics

During the experiments (See Section 1.4), the text is transformed into
lower case and split into tokens of at least two consecutive word-characters
length. For each combination of embedding model and dataset, we provide
the out-of-vocabulary (OOV) ratio of the embedding models with respect
to our analysis procedure (See Table A.5). The out-of-vocabulary ratio is
defined as nembedded tokens

ntokens
.
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Table A.5. Ratio of out-of-vocabulary terms of the employed models GloVe (GLV),
Word2Vec (W2V) and Doc2Vec (D2V) for the datasets NTCIR2, Economics and
Reuters using either the title or the full-text field.

Dataset NTCIR2 Economics Reuters
Field title abstract title full-text title full-text

GLV .04 .05 .01 .04 .03 .02
W2V .08 .10 .04 .20 .13 .19
D2V .04 .06 .02 .16 .07 .14

We observe that the OOV ratios for the W2V model are consistently higher
than for the D2V model, whose values are in turn higher than the ones of
the GLV model (See Table A.5). However, these statistics not only depend
on the vocabulary of the model, but also on the analysis process of the
documents and queries. In case of the full-text field and the W2V model
(as well as the D2V model), at least the 50 most frequent out-of-vocabulary
words were numbers. On the other side, the GLV model does contain
(common) numbers, which explains the lower OOV ratio values.

A.3 Up-training of missing words

We chose to evaluate up-training of missing words on the Economics
dataset, since it contains the most out-of-vocabulary words (See Table A.5).
We start with a pre-trained word embedding and continue training for
out-of-vocabulary words. The updates for the word vectors of the original
pre-trained embedding are multiplied with a lock factor. A lock factor
of zero means that the original vectors are not changed. In our setting,
zero epochs of up-training differs from no up-training. Zero epochs of
up-training lead to random initialisation of missing word vectors. The
results of Table A.6 indicate that up-training of missing word vectors on
titles is not helpful. When using a lock factor of .0 or .1, the attained metric
scores are merely changed. Using a higher lock factor (.5) decreases the
attained scores in all metrics.
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Table A.6. Effect of up-training out-of-vocabulary words on the title field of the
Economics dataset using skip-gram negative sampling. The updates for already
existing word vectors are multiplied with the lock factor. Hence, a lock factor of
zero freezes the original vectors.

Model Lock Epochs MAP MRR NDCG

TF-IDF — — .37 (.38) .42 (.44) .26 (.30)
IWCSW2V — — .37 (.37) .43 (.43) .27 (.30)
IWCSW2V — 0 .38 (.37) .44 (.44) .27 (.30)
IWCSW2V .0 50 .38 (.37) .44 (.44) .27 (.30)
IWCSW2V .0 100 .38 (.37) .44 (.44) .27 (.30)
IWCSW2V .1 50 .38 (.38) .43 (.44) .27 (.31)
IWCSW2V .5 50 .35 (.38) .40 (.44) .25 (.30)
IWCSGLV — 0 .37 (.37) .43 (.44) .27 (.30)

A.4 All-but-the-top embedding post-processing

In the following, we provide the results for the application all-but-the-top
embedding post-processing [MBV17]. The global mean and the first D
principal components are subtracted from the word vectors. As proposed
by Mu, Bhat, and Viswanath [MBV17], we chose D = 2 for the GLV model
and D = 3 for the W2V model.
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Table A.7. Effect of all-but-the-top embedding post-processing considering D
principal components on the Reuters dataset

Model D MAP MRR NDCG

title field
IWCSGLV — .58 (.31) .69 (.39) .45 (.29)
IWCSW2V — .60 (.33) .69 (.40) .47 (.32)
IWCSGLV 2 .35 (.30) .39 (.37) .27 (.27)
IWCSW2V 3 .55 (.32) .63 (.40) .42 (.30)

full-text field
IWCSGLV — .54 (.34) .63 (.41) .47 (.33)
IWCSW2V — .55 (.35) .60 (.41) .49 (.36)
IWCSGLV 2 .22 (.25) .26 (.33) .16 (.22)
IWCSW2V 3 .53 (.35) .59 (.41) .44 (.35)

We provide the results for word centroid similarity with all-but-the-top
post-processed word embeddings on the Reuters dataset (See Table A.7).
All-but-the-top embedding post-processing does not improve the perfor-
mance of word centroid similarity in our setting.
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Integration into Elasticsearch

We evaluated word embeddings for information retrieval in a practical
setting. We concluded that the IDF re-weighted word centroid similarity
is favourable in terms of ranking quality. While our evaluation and com-
parison is based on a python implementation, we simulated a practical
setting, which can be realised in Elasticsearch 1. Since we apply the actual
embedding operation on top of the token frequencies, the integration
of word embeddings in Elasticsearch is possible. However, the required
cost for a query-document similarity computation would be increased
by summation of the word vectors of the specific document. As this is
an expensive operation, it is desired to compute the (IDF re-weighted)
word centroids at index time instead of query time. Therefore, we propose
to implement a dedicated TokenFilter, which takes raw token counts as
input and produces a token stream whose size matches the dimensionality
of the word embedding. This output token stream resembles the (possibly
IDF re-weighted) word centroid vector for the respective document. Please
note, that this would effectively nullify the matching operation, since word
vectors are dense. Thus, the word centroid has to be stored separately,
in addition to the raw token counts and should not affect the matching
operation. To obtain the desired behaviour, a dedicated Similarity is also
necessary. Thus, the following additions to Elasticsearch are required:

EmbeddingTokenFilter A token filter that adds the word centroid for the
document to a token stream input.

EmbeddedSimilarity A similarity that disregards the raw token counts but
takes only the word centroids into account.

1https://www.elastic.co/products/elasticsearch

73

https://www.elastic.co/products/elasticsearch


B. Integration into Elasticsearch

At index time, the documents are analysed and then the centroid is com-
puted by the EmbeddingTokenFilter, while the original token counts are
retained. In the analysis process at query time, we only analyse the query
up to the raw token counts and do not apply the EmbeddingTokenFilter.
Then the matching operation matches the documents in the index. After
the matching operation, the EmbeddedSimilarity instance may transform
the query into its word centroid representation and compute the cosine
distance with respect to the word centroid of the document. A data flow

Index time

Query time

WordEmbedding

EmbeddingTokenFilterQueryParser

EmbeddedSimilarity

Index

Matching

Analysis

centroids

Document

Query

Analysis

Scored Documents

Figure B.1. Data flow graph for the integration of embedding-based retrieval
techniques into Elasticsearch. Ellipsoid shapes resemble volatile raw data, while
rectangular shapes resemble algorithms. Folder-like shapes represent persistent
data.
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graph is shown in Figure B.1. To summarise, word embeddings can be
integrated into Elasticsearch by a plug-in that provides a new dedicated
token filter and similarity. It is necessary, to carefully store the centroids
in the index without interfering with the matching operation. At query
time, the EmbeddedSimilarity class needs to aggregate the word vectors
to their centroids, before the cosine similarity is computed. In the case of
embedding-based query expansion, a dedicated QueryParser would be a
possible future extension.
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